A Robust Approach for Blur and Sharp Regions’ Detection Using Multisequential Deviated Patterns

Author:

Khan Awais1ORCID,Javed Ali1ORCID,Irtaza Aun1ORCID,Mahmood Muhammad Tariq2ORCID

Affiliation:

1. Department of Computer Science, University of Engineering and Technology Taxila, Taxila, Pakistan

2. Future Convergence Engineering, School of Computer Science and Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea

Abstract

Blur detection (BD) is an important and challenging task in digital imaging and computer vision applications. Accurate segmentation of homogenous smooth and blur regions, low-contrast focal regions, missing patches, and background clutter, without having any prior information about the blur, are the fundamental challenges of BD. Previous work on BD has emphasized much effort on designing local sharpness metric maps from the images. However, the smooth/blurred regions having the same patterns as sharp regions make them problematic. This paper presents a robust novel method to extract the local metric map for blurred and nonblurred regions based on multisequential deviated patterns (MSDPs). Unlike the preceding, MSDP extracts the local sharpness metric map on the images at multiple scales using different adaptive thresholds to overcome the problems of smooth/blur regions and missing patches. By using the integral values of the image along with image masking and Otsu thresholding, highly accurate segmented regions of the images are acquired. We argue/hypothesize that the local sharpness map extraction by using direct integral information of the image is highly affected by the threshold selected for distinction between the regions, whereas MSDP feature extraction overcomes the limitations substantially by using automatic threshold computation over multiple scales of the images. Moreover, the proposed method extracts the relatively accurate sharp regions from the high-dense blur and noisy images. Experiments are conducted on two commonly used SHI and DUT datasets for blur and sharp region classifications. The results indicate the effectiveness of the proposed method in terms of sharp segmented regions. Experimental results of qualitative and quantitative comparisons of the proposed method with ten comparative methods demonstrate the superiority of our method. Moreover, the proposed method is also computationally efficient over state-of-the-art methods.

Funder

Korea University of Technology and Education

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference38 articles.

1. Salient object detection in the deep learning era: an in-depth survey;W. Wang;IEEE Transactions on Pattern Analysis and Machine Intelligence,2021

2. Point-Sampling Method Based on 3D U-Net Architecture to Reduce the Influence of False Positive and Solve Boundary Blur Problem in 3D CT Image Segmentation

3. Generative adversarial U-net for domain-free medical image augmentation;X. Chen,2021

4. Multi-focus image fusion for multiple images using adaptable size windows and parallel programming

5. Automatic Extraction of Blur Regions on a Single Image Based on Semantic Segmentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3