Simulation and Analysis with Wavelet Transform Technique and the Vibration Characteristics for Early Revealing of Cracks in Structures

Author:

Abu-Hamdeh Nidal H.1,Daqrouq Khaled2,Mebarek-Oudina Fateh3ORCID

Affiliation:

1. Mechanical Engineering Department, King Abdulaziz University, P. O. Box 80204, Postal Code 21589, Jeddah, Saudi Arabia

2. Electrical and Computer Engineering Department, King Abdulaziz University, P. O. Box 80204, Jeddah, Saudi Arabia

3. Department of Physics, Faculty of Sciences, University of 20 août 1955—Skikda, B. P 26 Road El-Hadaiek, Skikda 21000, Algeria

Abstract

Implementation of improved instruments is used to detect damage in an accurate manner and fully analyze its characteristics. An aluminum beam has been used in this work to identify cracks by using a vibration technique. The simulation of frequency response feature was conducted using a finite element model to provide average measures of intensities of vibration. Two forms of wavelet packet transform (WPT) entropies Shannon and log energy were applied to identify the position, width, and size of the crack. The results showed that with an increase in crack depth, the amplitude also increased at certain crack sizes and for all crack positions. For two crack depths of 1.6 mm and 0.16 mm having the same crack size and position 12 mm and 60 mm, respectively, a 4.5% increase in amplitude was observed at a crack depth of 1.6 mm. Moreover, the amplitude varied inversely with the position. A 12.6% increase in amplitude was observed at a crack depth of 1.6 mm rather than 0.16 mm, while both depths occurred at the same crack position (75 mm) and size (20 mm). Experimental validation was performed on a cantilever beam with one crack. The maximum absolute error found was 7.5% for the crack position and 9.1% for the crack size. With the increase in crack depth, the obtained results decrease the stiffness of a beam in a single crack case.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3