NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

Author:

Fu Xiu-Jun1,Peng Ying-Bo1,Hu Yi-Ping12,Shi You-Zhen1,Yao Min13,Zhang Xiong4

Affiliation:

1. Department of Burns and Plastic Surgery, No. 3 People’s Hospital, Institute of Traumatic Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 201900, China

2. Department of Burns, The Fourth Hospital Affiliated to Jinan University, Guangzhou 51022, China

3. Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA

4. Department of Burns and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China

Abstract

Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair.

Funder

Ph.D. Programs Foundation of Ministry of Education of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3