Affiliation:
1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract
In this paper, a nonlinearity evaluation is proposed in order to identify the rub-impact in rotor systems with pedestal looseness. Nonlinear mathematical models have been established for bearing-rotor systems with single pedestal looseness and pedestal looseness coupled with rub-impact. Piecewise linear stiffness and damping are considered regarding the position of pedestal looseness, while radial impact forces are defined using the Colulomb type of frictional relationship during rub-impact. The nonlinearity evaluation is employed to quantify the nonlinearity of the dynamics of bearing-rotor systems, which are calculated at different looseness clearances. The experiments for rotor systems with pure pedestal looseness and pedestal looseness coupled with rub-impact are conducted respectively to collect the vibration signals on different looseness clearances. Two different curves are obtained using the nonlinear fitting method for the values of nonlinearity evaluation. The rub-impact within rotor systems with pedestal looseness can then be identified by comparing the curves that denote the trend of nonlinearity evaluation for the measured vibration responses.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献