Heat Transfer Analysis of MHD Water Functionalized Carbon Nanotube Flow over a Static/Moving Wedge

Author:

Khan Waqar A.1,Culham Richard1,Haq Rizwan Ul2

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

2. Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan

Abstract

The MHD flow and heat transfer from water functionalized CNTs over a static/moving wedge are studied numerically. Thermal conductivity and viscosity of both single and multiple wall carbon nanotubes (CNTs) within a base fluid (water) of similar volume are investigated to determine the impact of these properties on thermofluid performance. The governing partial differential equations are converted into nonlinear, ordinary, and coupled differential equations and are solved using an implicit finite difference method with quasi-linearization techniques. The effects of volume fraction of CNTs and magnetic and wedge parameters are investigated and presented graphically. The numerical results are compared with the published data and are found to be in good agreement. It is shown that the magnetic field reduces boundary layer thickness and increases skin friction and Nusselt numbers. Due to higher density and thermal conductivity, SWCNTs offer higher skin friction and Nusselt numbers.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3