Optimum Array Spacing in Grid-Connected Photovoltaic Systems considering Technical and Economic Factors

Author:

Sánchez-Carbajal S.1ORCID,Rodrigo P. M.1

Affiliation:

1. Universidad Panamericana, Facultad de Ingeniería, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Aguascalientes, Mexico

Abstract

The performance and economics of grid-connected photovoltaic (PV) systems are affected by the array spacing. Increasing the array spacing implies reducing the impact of shading, but at the same time, it increases the land purchase/preparation costs and the wiring costs. A number of technical and economic factors are involved when selecting an optimum array spacing. Designers of PV plants often set the row-to-row spacing based on simplified rules, losing the opportunity of improving the profitability of their projects. In this paper, a comprehensive methodology for optimizing the array spacing is proposed. It is based on annual shading energy calculations and incorporates a PV energy yield model together with an economic model focused on investment costs. The method is applied to the climatic conditions in Aguascalientes, Mexico, as a case study. A sensitivity analysis allowed the impact of the technical and economic parameters involved on the optimum interrow distance to be quantified. According to the results, the most relevant technical parameters are the module tilt (often considered by the PV designers), the ratio of plant width to plant length, and the module efficiency. The main economic parameters are the land-related costs and the costs per kWp. The comparison of this methodology to a conventional rule based on the winter solstice condition shows differences in the array spacing for the same location when the multiple technical and economic parameters are considered. Therefore, the proposed method will be useful for PV designers to improve the energetic and economic behavior of their systems.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3