Design of Structural Concrete with Bone China Fine Aggregate Using Statistical Approach

Author:

Gour Chandra Prakash1,Dhurvey Priyanka1ORCID,Shaik Nagaraju2ORCID

Affiliation:

1. Department of Civil Engineering, MANIT, Bhopal 462003, India

2. Department of Construction Technology and Management, Wollega University Nekemte, Nekemte, Ethiopia

Abstract

In this rapidly industrializing world, recycling materials for construction is crucial for protecting natural resources and promoting sustainable human growth. It should be carefully considered because using the waste in the structural concrete is cost-effective but it is also constrained due to its declining qualities. Bone China waste (BCW) possesses pozzolanic properties and it was occasionally used in concrete by a few researchers. Therefore, in the current investigation, the workability, compressive, split tensile, and flexure strengths of the fresh and hardened characteristics are first determined. 0%, 20%, 40%, 60%, 80%, and 100 percent of (BCW) were utilized to replace natural fine aggregate (sand). The experiment’s findings demonstrate that every percentage of BCW replacement yields the desired characteristic strength, a mix with 60% BCW yielding the highest strength value. Furthermore, it was discovered that utilizing fine bone China instead of conventional fine aggregate in concrete increased the compressive, split tensile, and flexure strength. Through traditional laboratory experiments, a valid criterion for choosing an ideal mix combination of BCW as fine aggregate in concrete is quite laborious and time-consuming. As a result, the statistical models were presented based on the laboratory-tested compressive strength data for concrete including varying amounts of bone China waste as fine aggregate, which show resilience and normality when assessed using fundamental statistical techniques. Finally, a good agreement was found between the created models and the experimental results as well as with proven existing models. These models can forecast the compressive, flexural, and split tensile strengths of concrete when combined with bone China fine aggregates or any other type of fine waste. With this framework, one may examine the same factors as the study and make sure that concrete has the maximum strength and sustainability. An improved microstructure of the concrete was observed which exhibits fewer porosity and cracks when fine BCW was used in place of sand.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3