Macrophage Rmp Ameliorates Myocardial Infarction by Modulating Macrophage Polarization in Mice

Author:

Zhang Jian1ORCID,Yin Zongtao1,Yu Liming1,Wang Zhishang1,Liu Yu1,Huang Xiaoru2,Wan Song3ORCID,Lan Hui-yao2ORCID,Wang Huishan1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China

2. Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

3. Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong

Abstract

Background. Inflammation plays important roles during myocardial infarction (MI). Macrophage polarization is a major factor that drives the inflammatory process. Our previous study found that RNA polymerase II subunit 5-mediating protein (RMP) knockout in cardiomyocytes caused heart failure by impairing mitochondrial structure and function. However, whether macrophage RMP plays a role in MI has not been investigated. Methods. Macrophage RMP-knockout in combination with a mouse model of MI was used to study the function of macrophage RMP in MI. Next, we modified bone marrow-derived macrophages (BMDMs) by plasmid transfection, and the BMDMs were administered to LysM-Cre/DTR mice by tail vein injection. Immunoblotting and immunofluorescence were used to detect macrophage polarization, fibrosis, angiogenesis, and the p38 signaling pathway in each group. Results. Macrophage RMP deficiency aggravates cardiac dysfunction, promotes M1 polarization, and inhibits angiogenesis after MI. However, RMP overexpression in macrophages promotes M2 polarization and angiogenesis after MI. Mechanistically, we found that RMP regulates macrophage polarization through the heat shock protein 90– (HSP90–) p38 signaling pathway. Conclusions. Macrophage RMP plays a significant role in MI, likely by regulating macrophage polarization via the HSP90–p38 signaling pathway.

Funder

LiaoNing Revitalization Talent Program

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3