Effect of Microstructure on the Corrosion Fatigue Crack Growth of Low and Medium Steels

Author:

Wang Jing1ORCID,Zhang Yan1ORCID,Yu Chunting1ORCID,Zhao Bo23ORCID

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. Key Laboratory of Special Equipment Safety and Energy-saving for State Market Regulation, Beijing 100048, China

3. China Special Equipment Inspection and Research Institute(CSEI), Beijing 100026, China

Abstract

This article studies the effect of microstructure on the corrosion fatigue crack growth behavior of low and medium carbon steels. 45 steel and 15CrMo were selected and five typical microstructures were obtained by different heat treatment processes. The microstructures of 45 steel and 15CrMo after annealing and normalizing are both ferrite and pearlite, but the proportions of ferrite and pearlite in the four microstructures are different. The quenching and tempering microstructure of 45 steel is tempered fine pearlite. Corrosion fatigue tests were conducted on specimens with different microstructures of the two materials. Expressions of corrosion fatigue crack growth rate and da/dN∼ΔK fitting curves of different microstructures were obtained. Comparison of da/dN∼ΔK curves of 45 steel shows that tempered fine pearlite has the best resistance to corrosion fatigue crack growth, and the content of pearlite has a great impact on the corrosion fatigue crack growth behavior for specimens with the microstructure of ferrite and pearlite. In the low ΔK region, the corrosion factor plays a dominant role in fatigue crack growth, and the corrosion resistance of pearlite is weak, which leads to a higher da/dN in the normalized state. In the high ΔK region, fatigue factor dominants, since the fatigue resistance of pearlite is strong, da/dN of the annealed state is higher. The experimental results of 15CrMo showed the same crack growth rate change regulation as that of 45 steel, which further proves the effect of pearlite on the corrosion fatigue crack propagation behavior.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3