Study on Water Absorption and Thermal Conductivity of Tunnel Insulation Materials in a Cold Region under Freeze-Thaw Conditions

Author:

Li Youyun1,Wang Huan1ORCID,Yang Li12,Su Shiqiang1

Affiliation:

1. Key Laboratory of Special Area Highway Engineering, Ministry of Education, Chang’an University, Xi’an 710064, China

2. Sichuan Expressway Construction and Development Group Co., Ltd., Chengdu 610000, Si’chuan, China

Abstract

A thermal insulation layer is often deposited on the lining structure of tunnels in cold regions to solve the problem of frost damage. When the air humidity in the tunnel becomes excessively high, the thermal insulation material tends to absorb water, leading to significant changes in thermal conductivity. Moreover, the temperature differences between the day and night cycles have been observed to be significant in portal sections of cold region tunnels, which facilitate the freeze-thaw cycle and, consequently, deteriorate the performance of the thermal insulation material. Therefore, the purpose of this study is to determine the changes in the water absorption, thermal conductivity, and microstructure of polyurethane and polyphenolic insulation boards under freeze-thaw conditions. To this end, an indoor water absorption test was conducted for both the insulation boards till they were saturated, which then underwent a freeze-thaw cycle test. It was determined that the water absorption and thermal conductivities of these boards increased linearly with the number of freeze-thaw cycles. In order to explore the change of thermal conductivity of thermal insulation materials after moisture absorption, this study provides insights into the relationship between the thermal conductivities and water contents of tunnel insulation materials under normal and freezing temperatures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3