Rapamycin Treatment of Tendon Stem/Progenitor Cells Reduces Cellular Senescence by Upregulating Autophagy

Author:

Nie Daibang12ORCID,Zhang Jianying2,Zhou Yiqin3ORCID,Sun Jiuyi14,Wang Wang1,Wang James H.-C.256ORCID

Affiliation:

1. Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China

2. MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

3. Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China

4. Department of Orthopaedics, Navy Medical Center of PLA, Shanghai, China

5. Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA

6. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

The elderly population is prone to tendinopathy due to aging-related tendon changes such as cellular senescence and a decreased ability to modulate inflammation. Aging can render tendon stem/progenitor cells (TSCs) into premature senescence. We investigated the effects of rapamycin, a specific mTOR inhibitor, on the senescence of TSCs. We first showed that after treatment with bleomycin in vitro, rat patellar TSCs (PTSCs) underwent senescence, characterized by morphological alterations, induction of senescence-associated β-galactosidase (SA-β-gal) activity, and an increase in p53, p21, and p62 protein expression. Senescence of PTSCs was also characterized by the elevated expression of MMP-13 and TNF-α genes, both of which are molecular hallmarks of chronic tendinopathy. We then showed that rapamycin treatment was able to reverse the above senescent phenotypes and increase autophagy in the senescent PTSCs. The activation of autophagy and senescence rescue was, at least partly, due to the translocation of HMGB1 from the nucleus to the cytosol that functions as an autophagy promoter. By reducing TSC senescence, rapamycin may be used as a therapeutic to inhibit tendinopathy development in the aging population by promoting autophagy.

Funder

Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3