Deep ChaosNet for Action Recognition in Videos

Author:

Chen Huafeng1ORCID,Zhang Maosheng2,Gao Zhengming1,Zhao Yunhong1

Affiliation:

1. School of Computer Engineering, Jingchu University of Technology, Jingmen, China

2. School of Mathematics and Statistics, Yulin Normal University, Yulin, China

Abstract

Current methods of chaos-based action recognition in videos are limited to the artificial feature causing the low recognition accuracy. In this paper, we improve ChaosNet to the deep neural network and apply it to action recognition. First, we extend ChaosNet to deep ChaosNet for extracting action features. Then, we send the features to the low-level LSTM encoder and high-level LSTM encoder for obtaining low-level coding output and high-level coding results, respectively. The agent is a behavior recognizer for producing recognition results. The manager is a hidden layer, responsible for giving behavioral segmentation targets at the high level. Our experiments are executed on two standard action datasets: UCF101 and HMDB51. The experimental results show that the proposed algorithm outperforms the state of the art.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3