Affiliation:
1. Anhui Province Key Laboratory of Special Heavy Load Robot, Maanshan 243032, China
2. School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China
Abstract
In the production process of steel strips, the detection of surface defects is very important. However, traditional methods of defect detection bring problems of low detection accuracy and dependence on subjective judgment. In this study, the surface defects of steel strips are detected by a classic convolutional neural network method that is improved by the use of a transfer learning model. This model has the advantages of shorter training time, faster convergence, and more accurate weight parameters. The transfer learning model obtained through experiments secures better results in defect detection than the classic convolutional neural network method, as its accuracy of training and testing has reached about 98%. Finally, a model based on a full convolutional neural network (FCN) is proposed for segmenting the defective areas of steel strips.
Funder
Anhui Province Key Laboratory of Special and Heavy Load Robot
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献