Extracting Vehicle Trajectories Using Unmanned Aerial Vehicles in Congested Traffic Conditions

Author:

Kim Eui-Jin1ORCID,Park Ho-Chul1ORCID,Ham Seung-Woo1,Kho Seung-Young2,Kim Dong-Kyu2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

2. Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Abstract

Obtaining the trajectories of all vehicles in congested traffic is essential for analyzing traffic dynamics. To conduct an effective analysis using trajectory data, a framework is needed to efficiently and accurately extract the data. Unfortunately, obtaining accurate trajectories in congested traffic is challenging due to false detections and tracking errors caused by factors in the road environment, such as adjacent vehicles, shadows, road signs, and road facilities. Unmanned aerial vehicles (UAVs), with incorporating machine learning and image processing, can mitigate these difficulties by their ability to hover above the traffic. However, research is lacking regarding the extraction and evaluation of vehicle trajectories in congested traffic. In this study, we propose and compare two learning-based frameworks for detecting vehicles: the aggregated channel feature (ACF), which is based on human-made features, and the faster region-based convolutional neural network (Faster R-CNN), which is based on data-driven features. We extend the detection results to extract vehicle trajectories in congested traffic conditions from UAV images. To remove the errors associated with tracking vehicles, we also develop a postprocessing method based on motion constraints. Then, we conduct detailed performance analyses to confirm the feasibility of the proposed framework on a congested expressway in Korea. The results show that Faster R-CNN outperforms the ACF in images with large objects and in those with small objects if sufficient data are provided. This framework extracts the vehicle trajectories with high precision, making them available for analyzing traffic dynamics based on the training of just a small number of positive samples. The results of this study provide a practical guideline for building a framework to extract vehicles trajectories based on given conditions.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3