A Hybrid Model for Forecasting Sunspots Time Series Based on Variational Mode Decomposition and Backpropagation Neural Network Improved by Firefly Algorithm

Author:

Li Guohui1ORCID,Ma Xiao1,Yang Hong1ORCID

Affiliation:

1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China

Abstract

The change of the number of sunspots has a great impact on the Earth’s climate, agriculture, communications, natural disasters, and other aspects, so it is very important to predict the number of sunspots. Aiming at the chaotic characteristics of monthly mean of sunspots, a novel hybrid model for forecasting sunspots time-series based on variational mode decomposition (VMD) and backpropagation (BP) neural network improved by firefly algorithm (FA) is proposed. Firstly, a set of intrinsic mode functions (IMFs) are obtained by VMD decomposition of the monthly mean time series of the sunspots. Secondly, the firefly algorithm is introduced to initialize the weights and thresholds of the BP neural network, and a prediction model is established for each IMF. Finally, the predicted values of these components are calculated to obtain the final predict results. Comparing BP model, FA-BP model, EMD-BP model, and VMD-BP model, the simulation results show that the proposed algorithm has higher prediction accuracy and can be used to forecast the time series of sunspots.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3