Multiresponse Optimization for a Novel Compliant Z-Stage by a Hybridization of Response Surface Method and Whale Optimization Algorithm

Author:

Dang Minh Phung1,Le Hieu Giang1,Le Ngoc N. Trung1,Le Chau Ngoc2,Dao Thanh-Phong34ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam

2. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

3. Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

4. Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

A novel compliant z-stage is applied for positioning and indenting a specimen in nano/microindentation testing system. For an excellent operation, the proposed z-stage can concurrently satisfy multicriteria comprising high safety factor, small parasitic motion, and large output displacement. The key aims of this article are to present a novel design of the compliant z-stage as well as an effective integration methodology of Taguchi method, response surface method, weight factor calculation based on signal to noise, and the whale optimization algorithm to resolve a design optimal problem so as to enrich the quality performances of the proposed stage. Primarily, the z-stage is designed based on four-lever amplifier, compliant hinge shifted arrangement mechanism, zigzag-based flexure spring guiding mechanism, and symmetric six leaf hinges-based parallel guiding mechanism. Secondly, the number experiment data are achieved by the Taguchi method and finite element analysis. Subsequently, the regression functions among input variables and quality characteristics are formed by exploiting response surface method. In addition, the weight factors for every characteristic are defined. Additionally, the sensitivity analysis is accomplished for determining influences of input variables on quality responses. Ultimately, based on regression equations, the whale optimization algorithm is executed to define the optimal factors. The consequences indicated that the output deformation is about 454.55 μm and the safety factor is around 2.38. Furthermore, the errors among the optimal consequences and the confirmations for the safety factor and output deformation are 7.12% and 4.25%, correspondingly. By using Wilcoxon and Friedman methods, the results revealed that the proposed algorithm is better than the cuckoo search algorithm. Based on the quality convergence characteristics of hybrid approach, the proposed method is proficient for resolving complicated multiobjective optimization.

Funder

Ho Chi Minh City University of Technology and Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3