Flow Field in the Turbine Rotor Passage in an Automotive Torque Converter Based on the High Frequency Response Rotating Five-hole Probe Measurement Part I: Flow Field at the Design Condition (Speed Ratio 0.6)

Author:

Liu Y. F.1,Lakshminarayana B.1,Burningham J.1

Affiliation:

1. Center for Gas Turbines and Power, The Pennsylvania State University, 153 Hammond Building, University Park, PA 16802, USA

Abstract

The relative flow field in an automotive torque converter turbine was measured at three locations inside the passage (turbine 1/4 chord, mid-chord, and 4/4 chord) using a highfrequency response rotating five-hole-probe. “Jet-Wake” flow structure was found in the turbine passage. Possible flow separation region was observed at the core/suction side at the turbine1/4chord and near the suction side at the turbine mid-chord. The mass averaged stagnation pressure drop is almost evenly distributed along the turbine flow path at the design condition(SR=0.6). The pressure drop due to centrifugal and Coriolis forces is found to be appreciable. The rotary stagnation pressure distribution indicates that there are higher losses at the first half of the turbine passage than at the second half. The major reasons for these higher losses and inefficiency are possible flow separation and a mismatch between the pump exit and the turbine inlet flow field. The fuel economy of a torque converter can be improved through redesign of the core region and by properly matching the pump and the turbine. The Part I of the paper deals with the design speed ratio(SR=0.6), and Part II deals with the off-design condition(SR=0.065)and the effects of speed ratio.

Funder

Powertrain Division of the General Motors Corporation

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3