Exercise Recommendation Model Based on Cognitive Level and Educational Big Data Mining

Author:

Pu Yongming1ORCID,Chen Hongming2

Affiliation:

1. Teachers’ College, Chengdu University, Chengdu 610106, China

2. Chengdu Jing Furong Yi Du School, Chengdu 610061, China

Abstract

There are differences in the learning ability and cognitive ability of different learners. The unified exercises of traditional teaching ignore the differences of learners and cannot meet the personalized needs of learners. Previous recommendation systems focus on the optimization of recommendation performance, rarely clearly reflect the learning state of learners’ knowledge points, and there are large errors in the recommendation results. This paper combines the comprehensive cognitive analysis module and the classified knowledge point cognitive analysis module to analyze the cognitive degree of learners’ knowledge points. Based on the analysis results, appropriate exercises are selected from the educational resource data to form a list to be recommended. The experimental results show that the exercise recommendation algorithm based on cognitive level and data mining has better recommendation effect and accuracy than the other two recommendation models. The error between the actual difficulty of recommended exercises and the index value is very small. It can recommend an appropriate exercise list according to the actual situation of learners. The teaching comparison results show that the exercise recommendation algorithm can meet the personalized needs of students, recommend targeted exercises, and effectively and greatly improve the learning effect and test scores in a short time. When the motion recommendation algorithm based on cognitive level and data mining has the best recommendation effect, the cognitive module of classifying knowledge points accounts for a large proportion in parameter adjustment. Compared with other recommendation systems, this model has higher accuracy and recommendation effect.

Publisher

Hindawi Limited

Subject

Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3