Design of an Anti-Windup PID Algorithm for Differential Torque Steering Systems

Author:

Peng Dengzhi12ORCID,Huang Bin12ORCID,Huang Hao3ORCID

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Liuzhou Wuling Automobile Industry Co. LTD, Liuzhou 545007, China

Abstract

The EV (electric vehicle) with a wheel hub motor has the advantage of independent driving torque distribution for each wheel, which allows the vehicle performance to be improved. Therefore, a lot of work has been done to investigate the torque allocation algorithm for the mechanical and differential torque integration steering system. To investigate the differential steering process, the 2 DOF (degree of freedom) dual-track reference models with linear and nonlinear tire models are established, and based on the steering process analysis and yaw rate gain calculation, a BP-NN (backpropagation neural network) model is initiated to maintain the accuracy of the calculated yaw rate gain. The limitation of DTSS (differential torque steering system) and the difference of reference models with linear and nonlinear tires are drawn. In addition, an anti-windup variable PID (proportion integration differentiation) controller is designed for the torque distribution. Based on the built 8 DOF model, the vehicle performance indicators are calculated and compared, the gap between the models with linear and nonlinear tires is non-negligible, and a reference model with a nonlinear tire model is recommended for the relevant research. The anti-windup variable PID controller has a better performance than the normal PID controller except for the stability phase plane indicator.

Funder

Innovative Research Team Development Program of Ministry of Education of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3