A Four-Layer Odd Function Symmetrical Dual-Polarization Equilateral Right Triangle Slot Printed Broadband Directional Antenna for Wireless Lab Measurement Applications

Author:

Wu Chang-Ju1,Chen I-Fong2ORCID,Sun Jwo-Shiun1,Peng Chia-Mei3,Li Kang-Ling2,Huang Chung-Hao2

Affiliation:

1. Department of Electronic Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Road, Taipei 10608, Taiwan

2. School of Electronics and Electrical Engineering, Dongguan Polytechnic/Department of Computer and Communication, Jinwen University of Science and Technology, No. 99, An-Chung Road, Hsin-Tien District, New Taipei City 23154, Taiwan

3. Department of Communication Engineering, Feng Chia University, No. 100 Wenhwa Road, Seatwen District, Taichung 40724, Taiwan

Abstract

A four-layer odd function symmetrical dual-polarization coplanar waveguide- (CPW-) fed equilateral right triangle slot printed broadband directional antenna for wireless lab measurement applications is presented. The proposed antenna consists of two stacked perpendicular odd function symmetrical equilateral right triangle slot antenna structures with two stacked reflector ground planes. It is miniaturized, simple, and easy to be fabricated. The measured results demonstrate that the proposed antenna can achieve wide impedance bandwidth that is almost 520% for |S11| and |S22|; VSWR ≦ 3 which has implemented the operating band from 1.37 to 7.12 GHz for Global Positioning System (GPS, 1.575 GHz), Wireless Local Area Networks band (2.4 GHz and 5.8 GHz), 6 GHz unlicensed spectrum (5.925 GHz∼7.125 GHz), Long Term Evolution Upper Band (LTE, 1710–2690 MHz), and sub-6 5 G band (3.5 GHz and 4.7 GHz) applications. The measured in-band isolation performance between the two input ports |S12| ≦ −17 dB is significantly achieved, and meanwhile, the antenna radiation pattern, peak gain, and efficiency of the proposed antenna are measured as well. In the end, the radiation pattern data are compared and analyzed with simulation results.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3