Affiliation:
1. Department of Public Security, Railway Police College, Zhengzhou 450000, China
Abstract
In recent years, the success rate of solving major criminal cases through big data has been greatly improved. The analysis of multimodal big data plays a key role in the detection of suspects. However, the traditional multiexposure image fusion methods have low efficiency and are largely time-consuming due to the artifact effect in the image edge and other sensitive factors. Therefore, this paper focuses on the suspect multiexposure image fusion. The self-coding neural network based on deep learning has become a hotspot in the research of data dimension reduction, which can effectively eliminate the irrelevant and redundant learning data. In the case of limited field depth, due to the limited focusing depth of the camera, the focusing plane cannot obtain the global clear image of the target in the depth scene, which is prone to defocusing and blurring phenomena. Therefore, this paper proposes a multifocus image fusion based on a sparse denoising autoencoder neural network. To realize an unsupervised end-to-end fusion network, the sparse denoising autoencoder neural network is adopted to extract features and learn fusion rules and reconstruction rules simultaneously. The initial decision graph of the multifocus image is taken as a prior input to learn the rich detailed information of the image. The local strategy is added to the loss function to ensure that the image is restored accurately. The results show that this method is superior to the state-of-the-art fusion methods.
Subject
Computer Science Applications,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献