Three-Dimensional Shapes and Cell Deformability of Rat Red Blood Cells during and after Asphyxial Cardiac Arrest

Author:

Lee Hui Jai1ORCID,Lee SangYun2,Park HyunJoo2,Park YongKeun2ORCID,Shin Jonghwan13ORCID

Affiliation:

1. Department of Emergency Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea

2. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 24051, Republic of Korea

3. Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea

Abstract

Changes in microcirculation are believed to perform an important role after cardiac arrest. In particular, rheological changes in red blood cells (RBCs) have been observed during and after ischemic-reperfusion injury. Employing three-dimensional laser interferometric microscopy, we investigated three-dimensional shapes and deformability of RBCs during and after asphyxial cardiac arrest in rats at the individual cell level. Rat cardiac arrest was induced by asphyxia. Five rats were maintained for 7 min of no-flow time, and then, cardiopulmonary resuscitation (CPR) was started. Blood samples were obtained before cardiac arrest, during CPR, and 60 min after return of spontaneous circulation (ROSC). Quantitative phase imaging (QPI) techniques based on laser interferometry were used to measure the three-dimensional refractive index (RI) tomograms of the RBC, from which structural and biochemical properties were retrieved. Dynamic membrane fluctuations in the cell membrane were also quantitatively and sensitively measured in order to investigate cell deformability. Mean corpuscular hemoglobin, mean cell volume, mean corpuscular hemoglobin concentration, and red blood cell distribution width remained unchanged during CPR and after ROSC compared with those before cardiac arrest. QPI results revealed that RBC membrane fluctuations, sphericity, and surface area did not change significantly during CPR or after ROSC compared with initial values. In conclusion, no three-dimensional shapes and cell deformability changes in RBCs were detected.

Funder

Seoul National University

Publisher

Hindawi Limited

Subject

Emergency Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holotomography;Nature Reviews Methods Primers;2024-07-25

2. Blood cell characterization based on deep learning and diffraction phase microscopy;Optics Communications;2024-06

3. Pathophysiology of Sepsis;The Sepsis Codex;2023

4. A continuum mechanics model for the Fåhræus-Lindqvist effect;Journal of Biological Physics;2021-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3