Integrative Analysis of Clinical and Bioinformatics Databases to Reveal the Role of Peripheral Innate Immunity in Kawasaki Disease

Author:

Ba Hongjun12ORCID,Zhang Lili1ORCID,Peng Huimin1ORCID,Lin Jixun1ORCID,Qin Youzhen12ORCID,Wang Yao3ORCID

Affiliation:

1. Department of Pediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

2. NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China

3. Guangzhou Medical University Cancer Hospital, Guangzhou, China

Abstract

Kawasaki disease (KD) is an immune-response disorder with unknown etiology. KD is an acute systemic immune vasculitis caused by infectious factors that can be complicated by coronary artery lesions. Innate immune cells are closely associated with KD onset, but we know little regarding the expression of immunity-related genes (IRGs) and the possible immune regulatory mechanisms involved in KD. In this study, we analyzed public single-cell RNA sequencing (scRNA-seq) and microarray data of peripheral blood mononuclear cells from normal controls and KD patients. The results of scRNA-seq revealed myeloid cells, T cells, B cells, NK cells, erythrocytes, platelets, plasma cells, hematopoietic stem cells, and progenitor cells in the peripheral blood of patients with KD. In particular, myeloid cells were expanded and heterogeneous. Further analysis of the myeloid cell population revealed that monocytes in KD exhibited higher expression of the inflammatory genes S100A8, S100A9, and S100A12; furthermore, CD14+CD16+ monocyte clusters were associated with inflammatory responses. Microarray data revealed that activation of the innate immune response contributed to KD development and progression. Differential expression and weighted gene coexpression network analysis identified 48 differentially expressed IRGs associated with response to intravenous immunoglobulin, currently the most effective treatment of KD, although numerous patients are resistant. Protein–protein interaction analysis identified ten hub genes (IL1R1, SOCS3, IL1R2, TLR8, IL1RN, CCR1, IL1B, IL4R, IL10RB, and IFNGR1) among the IRGs. In addition, the expressions of IL1R1, SOCS3, CCR1, IL1B, and IL10RB were validated in Chinese KD patients using the real-time reverse transcriptase-polymerase chain reaction. Finally, we found that the neutrophil/lymphocyte ratio could be used as a biomarker to predict responsiveness to intravenous immunoglobulin in KD. In conclusion, our data highlight the importance of innate immunity in KD pathogenesis and its potential in predicting treatment response.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3