Facile Synthesis of NaYF4:Yb Up-Conversion Nanoparticles Modified with Photosensitizer and Targeting Antibody for In Vitro Photodynamic Therapy of Hepatocellular Carcinoma

Author:

Ding Jingyi1ORCID,Jin Yan1,Zhu Fengqi1,Zhu Cunle1,Peng Jiang1,Su Tiantian2ORCID,Cai Jinzhen3ORCID

Affiliation:

1. The Institute of Transplantation Science, Qingdao University, Qingdao 266000, China

2. Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100086, China

3. Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao 266000, China

Abstract

Rare Earth up-conversion nanoparticles NaYF4:20%Yb,2%Er@PEI (UCNPs) were generated via a one-step hydrothermal technique at relatively reduced temperatures. Photosensitizer Ce6 and anti-EpCAM, a highly expressed monoclonal antibody in cancer stem cells of hepatocellular carcinoma, were linked to UCNP surfaces via the formation of amide linkage between carboxyl from Ce6 or anti-EpCAM and abundant amino from PEI, leading to the formation of Ps-Ce6 and anti-EpCAM-UCNPs-Ce6 nanoparticles. The synthesized nanoparticles characterized by XRD, TEM, and IR, and their zeta potential, ROS generation ability, Ce6 loading rate, and up-conversion fluorescence properties were investigated. It has been revealed that all the products were uniformly dispersed nanoparticles (25–32 nm), which crystallized primarily as hexagonal structures, and their up-conversion fluorescence spectra were similar to that of NaYF4:20%Yb,2%Er. The Ce6 loading rate in the anti-EpCAM-UCNPs-Ce6 nanoparticles was about 2.9%, thereby resulting in good ROS generation ability. For anti-EpCAM-UCNPs-Ce6, the biosafety, targeting effect, and PDT effect exposed under near-infrared (NIR) laser (980 nm) were evaluated using human liver cancer cells (BEL-7404). The results showed that it has good biocompatibility and biosafety as well as high targeting and PDT treatment efficiencies, which renders it a potential experimental material for the near-infrared PDT study.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3