A Novel Approach for Sleep Arousal Disorder Detection Based on the Interaction of Physiological Signals and Metaheuristic Learning

Author:

Badiei Afsoon1ORCID,Meshgini Saeed1ORCID,Rezaee Khosro2ORCID

Affiliation:

1. Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering University of Tabriz, Tabriz, Iran

2. Department of Biomedical Engineering, Meybod University, Meybod, Iran

Abstract

The vast majority of sleep disturbances are caused by various types of sleep arousal. To diagnose sleep disorders and prevent health problems such as cardiovascular disease and cognitive impairment, sleep arousals must be accurately detected. Consequently, sleep specialists must spend considerable time and effort analyzing polysomnography (PSG) recordings to determine the level of arousal during sleep. The development of an automated sleep arousal detection system based on PSG would considerably benefit clinicians. We quantify the EEG-ECG by using Lyapunov exponents, fractals, and wavelet transforms to identify sleep stages and arousal disorders. In this paper, an efficient hybrid-learning method is introduced for the first time to detect and assess arousal incidents. Modified drone squadron optimization (mDSO) algorithm is used to optimize the support vector machine (SVM) with radial basis function (RBF) kernel. EEG-ECG signals are preprocessed samples from the SHHS sleep dataset and the PhysioBank challenge 2018. In comparison to other traditional methods for identifying sleep disorders, our physiological signals correlation innovation is much better than similar approaches. Based on the proposed model, the average error rate was less than 2%–7%, respectively, for two-class and four-class issues. Additionally, the proper classification of the five sleep stages is determined to be accurate 92.3% of the time. In clinical trials of sleep disorders, the hybrid-learning model technique based on EEG-ECG signal correlation features is effective in detecting arousals.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3