Prediction Model for Long-Term Bridge Bearing Displacement Using Artificial Neural Network and Bayesian Optimization

Author:

Asad Ali Turab1,Kim Byunghyun2,Cho Soojin2,Sim Sung-Han34ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. Department of Civil Engineering, University of Seoul, Seoul 02504, Republic of Korea

3. School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea

4. Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Bridge bearings are critical components in bridge structures because they ensure the normal functioning of bridges by accommodating the long-term horizontal movements caused by changing environmental conditions. However, abnormal structural behaviors in long-term horizontal displacement are observed when the structural integrity of bridge structures is degraded. This study aims to construct an accurate prediction model for long-term horizontal displacement under varying external environmental conditions to support the reliable assessment of bridge structures which has not been fully explored in previous studies. The main challenge in developing an accurate prediction model lies in modeling the influencing factors that accurately simulate the effect of external environmental conditions on long-term horizontal displacement. To enhance the prediction accuracy in the proposed study, the surrounding environmental effects by considering the relationship between the current and past displacements in addition to air temperature, thermal inertia, and solar radiation are modeled as critical influencing factors. In addition, a data-driven method based on an artificial neural network (ANN) integrated with Bayesian optimization (BO) is employed to model and predict long-term horizontal displacement with the adopted critical influencing factors. An overpass bridge equipped with bearing displacement monitoring and temperature sensors is used to validate the robustness and effectiveness of the proposed method. The analysis of the results concludes that the proposed method can generate an accurate and robust long-term horizontal displacement prediction model that supports a reliable anomaly detection approach for early warning systems of bridge structures.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3