Parallel CNN Network Learning-Based Video Object Recognition for UAV Ground Detection

Author:

Liu Huanyu1,Qiao Jiaqing1ORCID,Li Lu2,Wang Lei3,Chu Hongyu3,Wang Qingyu2

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Defence Industry Secrecy Examination and Certification Center, Bejing 100001, China

3. Key Laboratory of Space Physics, China Academy of Launch Vehicle Technology, Beijing 10001, China

Abstract

Video object recognition for UAV ground detection is widely used in target search, daily patrol, environmental reconnaissance, and other fields. So, we propose the novel parallel deep learning network with the ability of the global and local joint feature extraction for the UAV video target detection. This paper focuses on solving the problems of feature extraction and target background discrimination required by target discovery to realize target discovery. Break through the key problems of real-time target recognition, such as multiscale targets, high background complexity, many small targets, dense target arrangement, and multidirection, and put forward an optimized network scheme, aiming at the problem of multiscale of image target and aiming at the problem of large change of target scale in image. In the network, the corresponding targets with different sizes and different aspect ratios are matched to make the different targets match the closest, and then, the position of the detection box is fine-tuned by regression. For the special problem of image viewing angle and for the rotation invariance of the airborne down looking image of the target, the usual solution is through data enhancement; that is, through the rotation transformation of the training data, the neural network can learn the rotation invariance of the target. Aiming at the problem of multi-directional image target and aiming at the problems of large target aspect ratio, large target tilt angle, and changeable direction in the target, we propose to use the tilt detection frame instead of the ordinary rectangular detection frame. Aiming at the problem of dense arrangement of image targets and aiming at a large number of densely arranged targets in the image, a feature refining module is proposed, which can effectively improve the detection performance of the detector for densely arranged targets. The experimental results shows that the proposed algorithm achieves more than 10% on the target detection accuracy with focal length change of 1-10 times. The detection accuracy meets the requirements of practical application.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Object Detection for UAVs Based on Deep Learning;Remote Sensing;2023-12-29

2. Target Detection in Complex Environments using UAV and Deep Learning-based Focal Pruning Method;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. Application of Machine Learning in Multi-Directional Model to Follow Solar Energy Using Photo Sensor Matrix;International Journal of Photoenergy;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3