Pathological Implications of Receptor for Advanced Glycation End-Product (AGER) Gene Polymorphism

Author:

Serveaux-Dancer Marine12,Jabaudon Matthieu23ORCID,Creveaux Isabelle1,Belville Corinne2,Blondonnet Raïko23,Gross Christelle2,Constantin Jean-Michel23,Blanchon Loïc2ORCID,Sapin Vincent12ORCID

Affiliation:

1. CHU Clermont-Ferrand, Department of Medical Biochemistry and Molecular Biology, 63000 Clermont-Ferrand, France

2. University Clermont Auvergne, CNRS UMR 6293, INSERM U1103, GReD, 63000 Clermont-Ferrand, France

3. CHU Clermont-Ferrand, Department of Perioperative Medicine, 63000 Clermont-Ferrand, France

Abstract

The receptor for advanced glycation end-products (RAGE) is a cell surface transmembrane multiligand receptor, encoded by the AGER gene. RAGE presents many transcripts, is expressed mainly in the lung, and involves multiple pathways (such as NFκB, Akt, p38, and MAP kinases) that initiate and perpetuate an unfavorable proinflammatory state. Due to these numerous functional activities, RAGE is implicated in multiple diseases. AGER is a highly polymorphic gene, with polymorphisms or SNP (single-nucleotide polymorphism) that could be responsible or co-responsible for disease development. This review was designed to shed light on the pathological implications of AGER polymorphisms. Five polymorphisms are described: rs2070600, rs1800624, rs1800625, rs184003, and a 63 bp deletion. The rs2070600 SNP may be associated with the development of human autoimmune disease, diabetes complications, cancer, and lung diseases such as chronic obstructive pulmonary disease and acute respiratory distress syndrome. The rs1800624 SNP involves AGER gene regulation and may be related to reduced risk of heart disease, cancer, Crohn’s disease, and type 1 diabetes complications. The rs1800625 SNP may be associated with the development of diabetic retinopathy, cancer, and lupus but may be protective against cardiovascular risk. The rs184003 SNP seems related to coronary artery disease, breast cancer, and diabetes. The 63 bp deletion may be associated with reduced survival from heart diseases during diabetic nephropathy. Here, these potential associations between AGER polymorphisms and the development of diseases are discussed, as there have been conflicting findings on the pathological impact of AGER SNPs in the literature. These contradictory results might be explained by distinct AGER SNP frequencies depending on ethnicity.

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3