Effects of Gamma Irradiation on Bacterial Microflora Associated with Human Amniotic Membrane

Author:

Binte Atique Fahmida1,Ahmed Kazi Tahsin1,Asaduzzaman S. M.2,Hasan Kazi Nadim1

Affiliation:

1. Department of Biochemistry and Microbiology, School of Life Sciences, North South University, Bangladesh

2. Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment, Savar, Bangladesh

Abstract

Human amniotic membrane is considered a promising allograft material for the treatment of ocular surface reconstruction, burns, and other skin defects. In order to avoid the transmission of any diseases, grafts should be perfectly sterile. Twenty-five amniotic sacs were collected to determine the microbiological quality of human amniotic membrane, to analyze the radiation sensitivity pattern of the microorganism, and to detect the radiation decimal reduction dose (D10) values. All the samples were found to be contaminated, and the bioburden was ranged from3.4×102to1.2×105 cfu/g. Initially, a total fifty bacterial isolates were characterized according to their cultural, morphological, and biochemical characteristics and then tested for the radiation sensitivity in an incremental series of radiation doses from 1 to 10 KGy. The results depict gradual decline in bioburden with incline of radiation doses.Staphylococcusspp. were the most frequently isolated bacterial contaminant in tissue samples (44%). TheD10values of the bacterial isolates were ranged from 0.6 to 1.27 KGy.Streptococcusspp. were found to be the highest radioresistant strain with the radiation sterilization dose (RSD) of 11.4 KGy for a bioburden level of 1000. To compare the differences,D10values were also calculated by graphical evaluations of the data with two of the representative isolates of each bacterial species which showed no significant variations. Findings of this study indicate that lower radiation dose is quite satisfactory for the sterilization of amniotic membrane grafts. Therefore, these findings would be helpful to predict the efficacy of radiation doses for the processing of amniotic membrane for various purposes.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3