Integrative Analyses of Biomarkers Associated with Endoplasmic Reticulum Stress in Ischemic Stroke

Author:

Zhang Xiaoting1ORCID,Li Xi1ORCID,Gu Jinyan2ORCID,Guo Jingpei1ORCID,Chen Jiayao1ORCID,Zhang Ke1ORCID,Liu Junfeng1ORCID,Liu Jiani3ORCID,Peng Chao1ORCID,Liu Hanwei1ORCID,Zhou Bin1ORCID

Affiliation:

1. Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China

2. Library, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China

3. Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China

Abstract

Background. Neuronal apoptosis, which is the primary pathological transform of cerebral injury following ischemic stroke (IS), is considered to be induced by endoplasmic reticulum stress (ERS) by numerous reports. However, ERS biomarkers in IS have not been fully identified yet. Consequently, the present study is aimed at exploring potential blood biomarkers by investigating the molecular mechanisms of ERS promoting neuronal apoptosis following IS development. Methods. A comprehensive analysis was performed with two free-accessible whole-blood datasets (GSE16561 and GSE37587) from the Gene Expression Omnibus database. Genetic information from 107 IS and 24 healthy controls was employed to analyze the differentially expressed genes (DEGs). Genes related to ERS (ERS-DEGs) were identified from the analysis. Enrichment analyses were performed to explore the biofunction and correlated signal pathways of ERS-DEGs. Protein-protein interaction (PPI) network and immune correlation analyses were performed to identify the hub genes along with their correspondent expressions and functions, all of which contributed to incremental diagnostic values. Results. A total of 60 IS-related DEGs were identified, of which 27 genes were confirmed as ERS-DEGs. GO and KEGG enrichment analysis corroborated that upregulated ERS-DEGs were principally enriched in pathways related to immunity, including neutrophil activation and Th17 cell differentiation. Moreover, the GSEA and GSVA indicated that T cell-related signal pathways were the most considerably immune pathways for ERS-DEG enrichment. A total of 10 hub genes were filtered out via the PPI network analysis. Immune correlation analysis confirmed that the expression of hub genes is associated with immune cell infiltration. Conclusions. By integrating and analyzing the two gene expression data profiles, it can be inferred that ERS may be involved in the development of neuronal apoptosis following IS via immune homeostasis. The identified hub genes, which are associated with immune cell infiltration, may serve as potential biomarkers for relative diagnosis and therapy.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis;Neurochemical Research;2024-01-03

2. Th17 Cells and IL-17A in Ischemic Stroke;Molecular Neurobiology;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3