Affiliation:
1. Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AZ 85721, USA
Abstract
The atomistic study shows strong size effects in thermally induced martensitic phase transformation evolution kinetics of equiatomic NiTi shape memory alloys (SMAs). It is shown that size effects are closely related to the presence of free surfaces; thus, NiTi thin films and nanopillars are studied. Quasi-static molecular dynamics simulations for several cell sizes at various (constant) temperatures are performed by employing well-established interatomic potentials for NiTi. The study shows that size plays a crucial role in the evolution of martensite phase fraction and, importantly, can significantly change the phase transformation temperatures, which can be used for the design of NiTi based sensors, actuators, or devices at nano- to microscales. Interestingly, it is found that, at the nanometer scale, Richard’s equation describes very well the martensite phase fraction evolution in NiTi thin films and nanopillars as a function of temperature.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献