Median-Difference Correntropy for DOA under the Impulsive Noise Environment

Author:

Ma Fuqiang123,He Jie123ORCID,Zhang Xiaotong123ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China

3. Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China

Abstract

The source localization using direction of arrival (DOA) of target is an important research in the field of Internet of Things (IoTs). However, correntropy suffers the performance degradation for direction of arrival when the two signals contain the similar impulsive noise, which cannot be detected by the difference between two signals. This paper proposes a new correntropy, called the median-difference correntropy, which combines the generalized correntropy and the median difference. The median difference is defined as the deviation between the sampling value and the median of the signal, and it intuitively reflects the abnormality of impulsive noise. Then, the median difference is combined with the generalized correntropy to form a new weighting factor that can effectively suppress the amplitude level of impulsive noise. To improve the robustness of the algorithm, an adaptive kernel size is also integrated into the weighting factor to obtain the optimal local feature. The influence of adaptive kernel sizes on the proposed algorithm is simulated, and the comparison between three typical direction-of-arrival estimation algorithms is conducted. The results show that the accuracy of the median-difference correntropy is significantly superior to the correntropy-based correlation and the phased fractional lower-order moment for a wide range of alpha-stable distribution noise environments.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3