Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis

Author:

Li Feng1ORCID,Cai Minggang12ORCID,Lin Mingwei1,Huang Xianghu3,Wang Jun2,Zheng Xuehong14,Wu Shaoting1,An Yu1

Affiliation:

1. College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China

2. Xiamen Ocean Vocational College, Xiamen 361101, China

3. College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China

4. Key Laboratory of Marine Chemistry and Applied Technology, Fujian Province, Xiamen 361101, China

Abstract

The current commercial production of natural astaxanthin is mainly carried out using Haematococcus pluvialis vegetative cells in the “two-stage” batch mode. The motile vegetative cells are more sensitive to stress than nonmotile vegetative cells, thereby affecting the overall astaxanthin productivity in H. pluvialis cultures. In this study, we compared the differences between motile cells and nonmotile cells in astaxanthin productivity, morphological changes, the mortality rate, and the diameter of the formed cysts. The experimental design was achieved by two different types H. pluvialis cell under continuous light of 80 μmol photons m−2 s−1 for a 9-day induction period. The highest astaxanthin concentration of 48.42 ± 3.13 mg L−1 was obtained in the nonmotile cell cultures with the highest the productivity of 5.04 ± 0.15 mg L−1 day−1, which was significantly higher than that in the motile cell cultures. The microscopic examination of cell morphological showed a large number of photooxidative damaged cells occurring in the motile cell cultures, resulting in higher cell mortality rate (22.2 ± 3.97%) than nonmotile cell cultures (9.6 ± 0.63%). In addition, the analysis results of cell diameter statistics indicated that nonmotile cells were more conducive to the formation of large astaxanthin-rich cysts than motile cells. In conclusion, the works presented here suggest that the accumulation of astaxanthin was significantly improved by nonmotile cells of H. pluvialis, which provided a possibility of optimizing the existing H. pluvialis cultivation strategy for the industrial production.

Funder

Xiamen Southern Ocean Technology Center of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3