Pilot Ex Vivo and In Vitro Evaluation of a Novel Foley Catheter with Antimicrobial Periurethral Irrigation for Prevention of Extraluminal Biofilm Colonization Leading to Catheter-Associated Urinary Tract Infections (CAUTIs)

Author:

Vargas-Cruz Nylev1,Rosenblatt Joel1ORCID,Reitzel Ruth A1ORCID,Chaftari Anne-Marie1,Hachem Ray1,Raad Issam1

Affiliation:

1. Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Unit 1460, Houston, TX 77030, USA

Abstract

CAUTI remains a serious healthcare issue for incontinent patients whose urine drainage is managed by catheters. A novel double-balloon Foley catheter was developed which was capable of irrigating the extraluminal catheter surfaces within the periurethral space between the urethral-bladder junction and meatus. The catheter has a retention cuff that is inflated to secure the catheter in the bladder and a novel irrigation cuff proximal to the urethral-bladder junction capable of providing periurethral irrigation from the urethral-bladder junction to the meatus. Uniform periurethral irrigation was demonstrated in an ex vivo porcine model by adding a dye to the antimicrobial urethral irrigation solution. An in vitro biofilm colonization model was adapted to study the ability of periurethral irrigation with a newly developed antimicrobial combination consisting of polygalacturonic acid + caprylic acid (PG + CAP) to prevent axial colonization of the extraluminal urethral indwelling catheter shaft by common uropathogens. The extraluminal surface of control catheters that were not irrigated formed biofilms along the entire axial urethral tract after 24 hours. Significant (p<0.001) inhibition of colonization was seen against multidrug-resistant Pseudomonas aeruginosa (PA), carbapenem-resistant Escherichia coli (EC), and carbapenem-resistant Klebsiella pneumoniae (KB). For other common uropathogens including Candida albicans (CA), Proteus mirabilis (PR), and Enterococcus faecalis (EF), a first irrigation treatment completely inhibited colonization of half of the indwelling catheter closest to the bladder and a second treatment largely disinfected the remaining intraurethral portion of the catheter towards the meatus. The novel Foley catheter and PG + CAP antimicrobial irrigant prevented biofilm colonization in an in vitro CAUTI model and merits further testing in an in vivo CAUTI prevention model.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3