Efficient Method of Firing Angle Calculation for Multiple Launch Rocket System Based on Polynomial Response Surface and Kriging Metamodels

Author:

Zhao Qiang1,Tang Qizhong2,Han Junli3,Yang Ming2,Chen Zhihua1ORCID

Affiliation:

1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China

2. Navigation and Control Technology Institute, China North Industries Croup Corporation, Beijing 100089, China

3. Beijing Institute of Electromechanical Technology, Beijing 100083, China

Abstract

Aiming at solving the problem of firing angle calculation for the multiple launch rocket system (MLRS) under both standard and actual atmospheric conditions, an efficient method based on large sample data and metamodel is proposed. The polynomial response surface, Kriging, and the ensemble of metamodels are used to establish the functional relations between the firing angle, the maximum range angle, the maximum range, and various influencing factors under standard atmospheric conditions, and related processes are described in detail. On this basis, the initial values for the first two iterations are determined with the meteorological data being made full use of in the six degrees of freedom trajectory simulation, and then the firing angle corresponding to a specific range is automatically and iteratively calculated. The efficient method of firing angle calculation for the typical MLRS has been extensively tested with three cases. The results show that the high-order polynomial response surface, the Kriging predictors with Cubic, Gauss, and Spline correlation functions, and the ensemble of above four individual metamodels have better performances for predicting the firing angle under standard atmospheric conditions compared with those of other metamodels under identical conditions, and execution times of the above four individual metamodels with a training sample size of 9000 are all less than 0.9ms, which verifies the effectiveness and feasibility of the proposed method for calculating the firing angle under standard atmospheric conditions. Moreover, the number of iterations is effectively reduced by using the proposed iterative search approach under actual atmospheric conditions. This research can provide guidance for designing the fire control and command control system of the MLRS.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3