Xiao-Yao-San Formula Improves Cognitive Ability by Protecting the Hippocampal Neurons in Ovariectomized Rats

Author:

Liu Lina12ORCID,Ge Fei3ORCID,Yang Haoran12ORCID,Shi Huilian1ORCID,Lu Weiting1ORCID,Sun Zhiguang2ORCID,Yan Jing4ORCID,Qiao Fei1ORCID

Affiliation:

1. Department of Hepatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

2. First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China

3. Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Hainan 226600, China

4. Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China

Abstract

Xiao-Yao-San (XYS) decoction is a traditional Chinese medicine formula. This study aimed to investigate the effect of XYS on cognitive abilities and its underlying mechanism in ovariectomized rats. Female Sprague-Dawley rats were ovariectomized and treated with XYS (3 g/kg or 9 g/kg) by gavage, with subcutaneous injection of 17-β estradiol (E2, 2 μg/kg) as a positive drug control and gavage of 1 ml saline (0.9%) as a placebo control. After 6 weeks of treatment, rats were examined using the Morris water maze test. The estradiol level in the serum and hippocampus was measured by ELISA. Golgi staining was performed to observe neuronal morphology in the hippocampus. Apoptosis of hippocampal cells was observed by TUNEL staining. The protein content of N-methyl-D-aspartate receptor (NMDAR) 2A and 2B in the hippocampal CA1 region was determined by Western blot and immunohistochemistry. Expression of estrogen receptor (ER) and PI3K signaling was detected by Western blot. Compared with the sham group, both learning and memory were impaired in ovariectomized rats. Rats treated with E2 or high-dose XYS showed better learning and memory compared with the saline-treated rats. High-dose XYS significantly reduced escape latency in the spatial acquisition trial; meanwhile, the cross times and duration in the probe quadrant were increased in the spatial probe trial. High-dose XYS promoted the de novo synthesis of E2 content in the hippocampus but had no significant effect on the serum E2 level. Golgi staining indicated that high-dose XYS could increase the branch number and density of dendritic spines in the hippocampal CA1 area. TUNEL staining showed that high-dose XYS alleviated ovariectomy-induced neuronal apoptosis. The expression level of NMDAR2A and NMDAR2B in hippocampal CA1 was upregulated by XYS treatment. The beneficial effect of XYS was through activating ERα-PI3K signaling. In conclusion, high-dose XYS treatment can improve the cognitive abilities of ovariectomized rats by protecting the hippocampal neurons and restoring the hippocampal E2 level.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3