A Formal Representation of the Semantics of Structural Geological Models

Author:

Zhan Xianglin1,Lu Cai1ORCID,Hu Guangmin2ORCID

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

Abstract

A structural geological model describes the structure of subsurface and plays an important role in the exploration of mineral and petroleum resources. Despite the widespread use of three-dimensional geological models, the theoretical research of informatics in the field of structural geology is still very limited. We have noticed a lack of methods for integrating explicit semantics of field observation data and geophysical data into geological models. The existing model representation methods focus on accurately representing the geometric morphological information of underground structures, ignoring the high-level semantics implied in the model. The formal representation of the semantic information is necessary to promote the development of intelligent methods in geomodeling and geophysical inversion. In this paper, we propose a new framework to formally represent the semantics of structural geological models with a clear distinction of geometric and geological semantics. For the geometric semantics, based on the extension of the 9-intersection model, we mathematically define the spatial topological relations between geometric objects that make up the geological model. For the geological semantics, we define the geological contact and compositional relations between geological bodies and geological surfaces and reveal the temporal implications of these geological relationships. We design a multilayer heterogeneous network as a computer characterization of the semantics of the geological model. A better representation of semantic information aids in the creation and validation of geological models, as well as management, queries, and analyses of geological knowledge.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3