Multithreshold Microbial Image Segmentation Using Improved Deep Reinforcement Learning

Author:

Zhou Minghui1ORCID

Affiliation:

1. College of Electronic Information, Jilin Communications Polytechnic, Changchun 130000, Jilin, China

Abstract

Image segmentation technology can effectively extract the foreground target in the image. However, the microbial image is easily disturbed by noise, its greyscale has the characteristics of nonuniform distribution, and several microorganisms with diverse forms exist in the same image, resulting in insufficient accuracy of microbial image segmentation. Therefore, a multithreshold microbial image segmentation algorithm using improved deep reinforcement learning is proposed. The wavelet transform method is used to remove the noise of the microbial image, the threshold number of the microbial image after denoising is determined by calculating the number of peaks of the grey histogram, and the foreground target of the microbial image is enhanced by the mean iterative threshold segmentation method, the preliminary segmentation of the microbial image is realized, the multithreshold microbial image segmentation model based on ResNet-Unet is constructed, and the cavity convolution and dual Q network mechanism are introduced to improve the segmentation model. The preliminary segmented microbial image is input into the improved segmentation model to realize the segmentation of the multithreshold microbial image. The results show that the proposed algorithm can effectively remove the noise of microbial images. With the increase in the number of thresholds, the peak signal-to-noise ratio, structural similarity, and feature similarity show an upward trend, and the loss rate of the model is less than 0.05%. The minimum running time of the algorithm is 3.804 s. It can effectively and quickly segment multithreshold microbial images and has important application value in the field of microbial recognition.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3