Speed Distribution Prediction of Freight Vehicles on Mountainous Freeway Using Deep Learning Methods

Author:

Chen Yuren1,Chen Yu1ORCID,Yu Bo2

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China

2. University of Michigan Transportation Research Institute, 2901 Baxter Rd, Ann Arbor, MI, USA

Abstract

Driving speed is one of the most critical indicators in safety evaluation and network monitoring in freight transportation. Speed prediction model serves as the most efficient method to obtain the data of driving speed. Current speed prediction models mostly focus on operating speed, which is hard to reveal the overall condition of driving speed on the road section. Meanwhile, the models were mostly developed based on the regression method, which is inconsistent with natural driving process. Recurrent neural network (RNN) is a distinctive type of deep learning method to capture the temporary dependency in behavioral research. The aim of this paper is to apply the deep learning method to predict the general condition of driving speed in consideration of the road geometry and the temporal evolutions. 3D mobile mapping was applied to obtain road geometry information with high precision, and driving simulation experiment was then conducted with the help of the road geometry data. Driving speed was characterized by the bimodal Gauss mixture model. RNN and its variants including long short-term memory (LSTM) and RNN and gated recurrent units (GRUs) were utilized to predict speed distribution in a spatial-temporal dimension with KL divergence being the loss function. The result proved the applicability of the model in speed distribution prediction of freight vehicles, while LSTM holds the best performance with the length of input sequence being 400 m. The result can be related to the threshold of drivers’ information processing on mountainous freeway. Multiple linear regression models were constructed to be a contrast with the LSTM model, and the results showed that LSTM was superior to regression models in terms of the model accuracy and interpretability of the driving process and the formation of vehicle speed. This study may help to understand speed change behavior of freight vehicles on mountainous freeways, while providing the feasible method for safety evaluation or network efficiency analysis.

Funder

Zhejiang Provincial Communication Department

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3