Impaired Glucose Metabolism in Young Offspring of Female Rats with Hypothyroidism

Author:

Liu Zhoujun12,Chen Yu3,Chen Guofang2,Mao Xiaodong3,Wei Xiao3,Li Xingjia3,Xu Yijiao3,Jiang Fan4,Wang Kun5ORCID,Liu Chao2ORCID

Affiliation:

1. The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China

2. Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China

3. Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China

4. The Third College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China

5. The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Abstract

Purpose. Because thyroid hormones from the maternal thyroid glands are known to influence the growth, development, and metabolic functioning of offspring, we used a rat model to preliminarily investigate the effects of maternal hypothyroidism on glucose metabolism, pancreas cell proliferation, and insulin production in young male offspring and the possible underlying mechanisms. Methods. Female rats were divided into a maternal hypothyroidism (MH) group, which received water containing 0.02% 6-propyl-2-thiouracil before and during pregnancy to induce hypothyroidism, and a control group which consumed tap water. Results. Our results showed that there were no differences of islets structure between the offspring from the two groups, but glucose metabolism was impaired with higher plasma glucose concentrations at 0 and 15 min in the OGTT in 8-week-old offspring of the MH group. From birth to 8 weeks, pancreatic TRβ1 and TRβ2 mRNA level declined significantly in MH offspring, accompanied by decreased Ki67 and insulin mRNA expression. Conclusions. Maternal hypothyroidism results in impaired pancreatic insulin synthesis and pancreatic cell proliferation in neonatal offspring and subsequent glucose intolerance in young offspring, which may be related to TRβ gene downregulation in the pancreas.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3