Impregnation of ZnO onto a Vegetal Activated Carbon from Algerian Olive Waste: A Sustainable Photocatalyst for Degradation of Ethyl Violet Dye

Author:

Abdessemed Ala12ORCID,Rasalingam Shivatharsiny3ORCID,Abdessemed Sanna1,Djebbar Kamel El Zin2,Koodali Ranjit4

Affiliation:

1. Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria

2. Laboratory of Science and Technology of the Environment, University Mentouri Constantine, Chaabat Errassas, Constantine, 25000, Algeria

3. Department of Chemistry, University of Jaffna, 40000, Sri Lanka

4. Department of Chemistry, University of South Dakota, Vermillion, SD 50679, USA

Abstract

This study is aimed at developing a simple and low-cost method to fabricate ZnO-loaded porous activated carbon (AC-ZnO) prepared from the Algerian olive-waste cakes and utilize it as a photocatalyst for the degradation of Ethyl Violet dye. The synthesized AC-ZnO material was characterized using powder X-ray diffraction, BET surface area measurements, Raman microscopy, thermogravimetric analysis, UV-visible diffuse reflectance spectroscopy, and zeta potential measurements. The degradation efficiency was evaluated with Ethyl Violet (EV) dye in aqueous solution under UV irradiation supplied by a Xenon arc lamp through a Pyrex glass filter (cutoff 280 nm), and the degraded products were identified by using electrospray ionization mass spectroscopy. Additional experiments were carried out under N2 flow and with isopropyl alcohol to examine the role of superoxide and hydroxyl radicals, respectively. The amount of OH radical formed on irradiated AC-ZnO was tested with terephthalic acid which can act as a chemical trap for the OH radicals. The results from this study indicate that the AC-ZnO is a potential catalyst for the pollutant removal and the OH radicals are the key species for the degradation of EV. Further, this study opens up an opportunity to produce cheaper activated carbon support from olive wastes for environmental remediation applications.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3