Affiliation:
1. Department of Computer Science & Information Engineering, Asia University, Taichung 41354, Taiwan
Abstract
A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM), and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO) for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT) nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline) RLO and second-stage (online) adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP) method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献