Integrating Optimized Multiscale Entropy Model with Machine Learning for the Localization of Epileptogenic Hemisphere in Temporal Lobe Epilepsy Using Resting-State fMRI

Author:

Fu Xiaoxuan12,Wang Youhua12,Belkacem Abdelkader Nasreddine3ORCID,Zhang Qirui4,Xie Chong12,Cao Yingxin12,Cheng Hao12,Chen Shenghua12ORCID

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China

2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China

3. Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain 15551, UAE

4. Department of Medical Imaging, General Hospital of Eastern Theater of PLA, Nanjing 210002, China

Abstract

The bottleneck associated with the validation of the parameters of the entropy model has limited the application of this model to modern functional imaging technologies such as the resting-state functional magnetic resonance imaging (rfMRI). In this study, an optimization algorithm that could choose the parameters of the multiscale entropy (MSE) model was developed, while the optimized effectiveness for localizing the epileptogenic hemisphere was validated through the classification rate with a supervised machine learning method. The rfMRI data of 20 mesial temporal lobe epilepsy patients with positive indicators (the indicators of epileptogenic hemisphere in clinic) in the hippocampal formation on either left or right hemisphere (equally divided into two groups) on the structural MRI were collected and preprocessed. Then, three parameters in the MSE model were statistically optimized by both receiver operating characteristic (ROC) curve and the area under the ROC curve value in the sensitivity analysis, and the intergroup significance of optimized entropy values was utilized to confirm the biomarked brain areas sensitive to the epileptogenic hemisphere. Finally, the optimized entropy values of these biomarked brain areas were regarded as the feature vectors input for a support vector machine to classify the epileptogenic hemisphere, and the classification effectiveness was cross-validated. Nine biomarked brain areas were confirmed by the optimized entropy values, including medial superior frontal gyrus and superior parietal gyrus ( p  < .01). The mean classification accuracy was greater than 90%. It can be concluded that combination of the optimized MSE model with the machine learning model can accurately confirm the epileptogenic hemisphere by rfMRI. With the powerful information interaction capabilities of 5G communication, the epilepsy side-fixing algorithm that requires computing power can be integrated into a cloud platform. The demand side only needs to upload patient data to the service platform to realize the preoperative assessment of epilepsy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3