Behaviors and Overlying Strata Failure Law for Underground Filling of a Gently Inclined Medium-Thick Phosphate Deposit

Author:

Li Xiaoshuang1234,Geng Jiabo1,Li Qihang1ORCID,Tian Weijun5,Zhou Tao1

Affiliation:

1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China

2. School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China

3. College of Civil Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China

4. Sinosteel Maanshan General Institute of Mining Research Co. Ltd., Maanshan, Anhui 243000, China

5. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China

Abstract

In this study, the No. 6 pit in the eastern mining area of the Jinning phosphate mine in China was taken as the research background. In order to reduce the cost of filling, an improved pillarless sublevel caving method is proposed. This method greatly improves the ore recovery rate by adding a recovery route. In addition, the combination of similar material simulation experiments and numerical simulations (discrete element and universal distinct element code) revealed the deformation and failure laws of the surrounding roof rock and the characteristics of the surface subsidence. The results indicate the following. (1) The similar simulation experimental results indicate that the deformation of the overlying rock layer originated from the direct roof of the goaf and gradually developed into the deep part of the rock layer. An irregular stepped caving zone formed in the goaf. The maximum surface subsidence was located above the phosphorus orebody, and it gradually decreased toward both sides. As the stope approached propulsion, the location of the maximum subsidence gradually moved toward the propulsion direction. (2) The numerical results revealed that the displacement of the overlying strata was nonlinear, and it decreased with increasing roof height. A support pressure concentration area was formed within a certain range of the stope roof. The numerical simulation results are basically consistent with the similar simulation experimental results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3