An Improved Building Reconstruction Algorithm Based on Manhattan World Assumption and Line-Restricted Hypothetical Plane Fitting

Author:

Zhang Xiaoguo1ORCID,Wang Guo2,Gao Ye1ORCID,Wang Huiqing1,Wang Qing1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210000, China

2. Arashi Vision Company Limited, Shenzhen 518000, China

Abstract

An improved patch-based multiview stereo (PMVS) algorithm based on Manhattan world assumption and the line-restricted hypothetical plane fitting method according to buildings’ spatial characteristics is proposed. Different from the original PMVS algorithm, our approach generates seed points purely from 3D line segments instead of using those feature points. First, 3D line segments are extracted using the existing Line3D++ algorithm, and the 3D line segment clustering criterion of buildings is established based on Manhattan world assumption. Next, by using the normal direction obtained using the result of 3D line segment clustering, we propose a multihypothetical plane fitting algorithm based on the mean shift method. Then, through subdividing on the triangle mesh constructed based on the building hypothetical plane model, semidense point cloud can be quickly obtained, and it is used as seed points of the PMVS pipeline instead of the sparse and noisy seed points generated by PMVS itself. After that, dense point cloud can be obtained through the existing PMVS expansion pipeline. Finally, unit and integration experiments are designed; the test results show that the proposed algorithm is 15%∼23% faster than the original PMWS in running time, and at the same time, the reconstruction quality of buildings is improved as well by successfully removing many noise points in the buildings.

Funder

Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Panoramic Image Reconstruction Algorithm in Three-Dimensional Layout of Indoor Scenes;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

2. Three-dimensional system modeling and design of ecological garden landscape based on the interlaced spatial pattern of light and shadow;Journal of Computational Methods in Sciences and Engineering;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3