Comparison of CaO-NPs and Chicken Eggshell-Derived CaO in the Production of Biodiesel from Schinziophyton rautanenii (Mongongo) Nut Oil

Author:

Mmusi Keene Carlvin12ORCID,Odisitse Sebusi1ORCID,Nareetsile Florence3ORCID

Affiliation:

1. Botswana International University of Science and Technology, Department of Chemical and Forensic Sciences, Private Bag 16, Palapye, Botswana

2. Botho University, Department of Applied Sciences, P O Box 501564, Gaborone, Botswana

3. University of Botswana, Chemistry Department, Private Bag 0704, Gaborone, Botswana

Abstract

The ever-increasing population growth and economic developments have heightened demand for energy. This has resulted in depletion and ever-rising prices of petroleum diesel, thus increasing environmental degradation. These complications have motivated this study for the search of an alternative eco-friendly and renewable source of energy such as biodiesel. Biodiesel has been found to be a potential alternative fuel for diesel. Biodiesel was produced by transesterification reaction of Schinziophyton rautanenii (mongongo) nut oil in the presence of a base heterogeneous catalyst: CaO derived from eggshell ash and synthesised CaO-nanoparticles (CaO-NPs). The catalysts were calcined at a temperature of 800°C for 3 h and characterized by scanning electron microscope-energy dispersive X-ray (SEM-EDX) where both catalysts showed agglomerated particles and high elemental composition of Ca and O. Powder X-ray diffraction (XRD) showed that CaO was present in both catalysts, and the average crystalline size obtained was 42 and 50 nm for CaO-NPs and eggshell ash, respectively. Fourier transmission infrared (FTIR) spectrometer showed absorption bands of CaO in both catalysts which were at 875 and 713.46 cm−1 for CaO-NPs and eggshell ash, respectively. The analysis of mongongo nut oil (MNO) and mongongo methyl esters (MMEs) was done according to the European biodiesel specification (EN 1421) and American Society for Testing and Materials (ASTM D675). Statistically, there was no significant difference between CaO-NPs and eggshell in terms of optimum yield ( P > 0.05 ) using a sample t-test. However, in terms of catalyst loading, the eggshell was a better catalyst as it required a low catalyst load to obtain an optimum yield of 83% at 6 wt.% compared to CaO-NPs with an optimum yield of 85% at 12 wt.%. The reactions were all performed at constant reaction conditions of 9 : 1 methanol to oil ratio, 3 h reaction time, and 65°C reaction temperature.

Funder

Botswana International University of Science and Technology

Publisher

Hindawi Limited

Subject

General Chemistry

Reference82 articles.

1. TaghizadeZ.Determination of biodiesel quality parameters for optimization of production process conditions2016Bragança, PortugalChemical Engineering, Polytechnic Institute of BragançaMaster thesis

2. Production and characterisation of biofuel from waste cooking oil;I. Emeji

3. Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source

4. The Development of Biodiesel Production from Vegetable Oils by Using Different Proportions of Lime Catalyst and Sodium Hydroxide

5. Enrichment of Biogas from Biodegradable Solid Waste—A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3