Classification of Lactate Level Using Resting-State EEG Measurements

Author:

Shaban Saad Abdulazeez12ORCID,Ucan Osman Nuri3ORCID,Duru Adil Deniz4ORCID

Affiliation:

1. Computer Science Department, College of Education for Pure Sciences, Diyala University, Diyala 32001, Iraq

2. Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altınbaş University, Istanbul 34217, Turkey

3. Engineering Faculty, Electrical and Electronics Department, Istanbul University, 34850 Avcilar, Istanbul, Turkey

4. Neuroscience and Psychology Research in Sports Lab, Faculty of Sport Science, Marmara University, 34668 Istanbul, Turkey

Abstract

The electroencephalography (EEG) signals have been used widely for studying the brain neural information dynamics and behaviors along with the developing impact of using the machine and deep learning techniques. This work proposes a system based on the fast Fourier transform (FFT) as a feature extraction method for the classification of human brain resting-state electroencephalography (EEG) recorded signals. In the proposed system, the FFT method is applied on the resting-state EEG recordings and the corresponding band powers were calculated. The extracted relative power features are supplied to the classification methods (classifiers) as an input for the classification purpose as a measure of human tiredness through predicting lactate enzyme level, high or low. To validate the suggested method, we used an EEG dataset which has been recorded from a group of elite-level athletes consisting of two classes: not tired, the EEG signals were recorded during the resting-state task before performing acute exercise and tired, the EEG signals were recorded in the resting-state after performing an acute exercise. The performance of three different classifiers was evaluated with two performance measures, accuracy and precision values. The accuracy was achieved above 98% by the K-nearest neighbor (KNN) classifier. The findings of this study indicated that the feature extraction scheme has the ability to classify the analyzed EEG signals accurately and predict the level of lactate enzyme high or low. Many studying fields, like the Internet of Things (IoT) and the brain computer interface (BCI), can utilize the findings of the proposed system in many crucial decision-making applications.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3