Factors Controlling Shale Reservoirs and Development Potential Evaluation: A Case Study

Author:

Luo Chao123ORCID,Lin Hun1ORCID,Peng Yujiao1ORCID,Qu Hai1ORCID,Huang Xiaojie1ORCID,Yin Nanxin1ORCID,Liu Wei4ORCID,Gao Xuanbo1ORCID

Affiliation:

1. Chongqing University of Science & Technology, Chongqing 401331, China

2. Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil & Gas Reservoirs in West China, Ministry of Education, Xi’an Shiyou University, Xi’an, Shanxi 710065, China

3. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China

4. Chongqing University, Chongqing 400044, China

Abstract

The shale of the Lower Silurian Longmaxi Formation is an important gas-producing layer for shale gas development in southern China. This set of shale reservoir characteristics and shale gas development potential provide an important foundation for shale gas development. This study takes wellblock XN111 in the Sichuan Basin, China, as an example and uses X-ray diffraction (XRD), scanning electron microscopy (SEM), isothermal adsorption, and other techniques to analyze the shale reservoir characteristics of the Lower Silurian Longmaxi Formation. The results show that the Lower Silurian Longmaxi Formation was deposited in a deep-water shelf environment. During this period, carbonaceous shale and siliceous shale characterized by a high brittle mineral content ( quartz > 40 wt . % , carbonate mineral > 10 wt . % ) and a low clay mineral content (<30 wt.%, mainly illite) were widely deposited throughout the region. The total organic carbon (TOC) content reaches up to 6.07 wt.%, with an average of 2.66 wt.%. The vitrinite reflectance is 1.6–2.28%, with an average of 2.05%. The methane adsorption capacity is 0.84–4.69 m3/t, with an average of 2.92 m3/t. Pores and fractures are developed in the shale reservoirs. The main reservoir space is composed of connected mesopores with an average porosity of 4.78%. The characteristics and development potential of the shale reservoirs in the Lower Silurian Longmaxi Formation are controlled by the following factors: (1) the widespread deep-water shelf deposition in wellblock XN111 was a favorable environment for the development of high-quality shale reservoirs with a cumulative thickness of up to 50 m; (2) the high TOC content enabled the shale reservoir to have a high free gas content and a high adsorptive gas storage capacity; and (3) the shale’s high maturity or over maturity is conducive to the development of pores and fractures in the organic matter, which effectively improves the storage capacity of the shale reservoirs. The reservoir characteristic index was constructed using the high-quality shale’s thickness, gas content, TOC, fracture density, and clay content. Using production data from shale gas wells in adjacent blocks, a mathematical relationship was established between the Estimated Ultimate Recovery (EUR) of a single well and the Reservoir Characteristics Index (Rci). The EUR of a single well in wellblock XN111 was estimated.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3