Energy Analysis of Contention Tree-Based Access Protocols in Dense Machine-to-Machine Area Networks

Author:

Vázquez-Gallego Francisco1,Alonso Luis2ORCID,Alonso-Zarate Jesus1

Affiliation:

1. Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Parc Mediterrani de la Tecnologia (PMT), Avenida Carl Friedrich Gauss 7, Castelldefels, 08860 Barcelona, Spain

2. Department of Signal Theory and Communications, EETAC, Universitat Politècnica de Catalunya (UPC) (BarcelonaTECH), Castelldefels, 08860 Barcelona, Spain

Abstract

Machine-to-Machine (M2M) area networks aim at connecting an M2M gateway with a large number of energy-constrained devices that must operate autonomously for years. Therefore, attaining high energy efficiency is essential in the deployment of M2M networks. In this paper, we consider a dense M2M area network composed of hundreds or thousands of devices that periodically transmit data upon request from a gateway or coordinator. We theoretically analyse the devices’ energy consumption using two Medium Access Control (MAC) protocols which are based on a tree-splitting algorithm to resolve collisions among devices: the Contention Tree Algorithm (CTA) and the Distributed Queuing (DQ) access. We have carried out computer-based simulations to validate the accuracy of the theoretical models and to compare the energy performance using DQ, CTA, and Frame Slotted-ALOHA (FSA) in M2M area networks with devices in compliance with the IEEE 802.15.4 physical layer. Results show that the performance of DQ is totally independent of the number of contending devices, and it can reduce the energy consumed per device in more than 35% with respect to CTA and in more than 80% with respect to FSA.

Funder

Generalitat de Catalunya

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3