Emotional Interaction and Behavioral Decision-Making Mechanism in Network Science Education Based on Deep Learning

Author:

Li Pengjiao1,Meng Qian1ORCID

Affiliation:

1. College of Education, Bohai University, Jinzhou 121000, Liaoning, China

Abstract

With the globalization of network education and the design and construction of all aspects of engineering, network science education is playing an increasingly important role in higher education and even the lifelong education system of college students. The purpose of this article is to study emotional interaction in deep learning network education and analyze the status quo of its behavioral decision-making mechanism. It uses research literature method, algorithmic statistical method, and questionnaire survey method to investigate specific groups of people; analyzes the status quo of emotional interaction and behavioral decision-making mechanism; improves statistical algorithms; and explores an old style emotional cognitive decision-making model. In this paper, a questionnaire survey of a university shows that the proportion of students whose online learning time is 1.5–2 hours is about 10.3% and the proportion of 1–1.5 hours is about 6.8%. The study time of students’ online courses is mainly concentrated. The study time between 0.5 and 1 hour accounts for about 83.2%; about 2.3% of learners rarely use the Internet, less than 0.5 hour; and 1% of students hardly use online courses and may rely more on traditional classroom teaching. Further research showed the behavior of their emotional interaction: interactive teaching network in six modules reached the upper level, the peak value of the curve was 0.737, the bottom value was 0.115, and the transitivity was above 0.115. From deep statistical learning algorithms to completing network science education, designing or modifying more comprehensive and faster bpq-l learning algorithms based on traditional learning algorithms can allow us to find target sentiments.

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3